#include #include #include #include #include #include #include #include #include #include #include #include #include #include struct { __uint(priority, 10); __uint(XDP_PASS, 1); } XDP_RUN_CONFIG(xdp_prog_main); SEC("xdp_prog") int xdp_prog_main(struct xdp_md *ctx) { // Initialize data. void *data_end = (void *)(long)ctx->data_end; void *data = (void *)(long)ctx->data; // Scan ethernet header. struct ethhdr *eth = data; // Check if the ethernet header is valid. if (unlikely(eth + 1 > (struct ethhdr *)data_end)) { return XDP_DROP; } // Check Ethernet protocol. if (unlikely(eth->h_proto != htons(ETH_P_IP) && eth->h_proto != htons(ETH_P_IPV6))) { return XDP_PASS; } u8 action = 0; u64 blocktime = 1; // Initialize IP headers. struct iphdr *iph = NULL; struct ipv6hdr *iph6 = NULL; u128 src_ip6 = 0; // Set IPv4 and IPv6 common variables. if (eth->h_proto == htons(ETH_P_IPV6)) { iph6 = data + sizeof(struct ethhdr); if (unlikely(iph6 + 1 > (struct ipv6hdr *)data_end)) { return XDP_DROP; } memcpy(&src_ip6, &iph6->saddr.in6_u.u6_addr32, sizeof(src_ip6)); } else { iph = data + sizeof(struct ethhdr); if (unlikely(iph + 1 > (struct iphdr *)data_end)) { return XDP_DROP; } } // Check IP header protocols. if ((iph6 && iph6->nexthdr != IPPROTO_UDP && iph6->nexthdr != IPPROTO_TCP && iph6->nexthdr != IPPROTO_ICMP) && (iph && iph->protocol != IPPROTO_UDP && iph->protocol != IPPROTO_TCP && iph->protocol != IPPROTO_ICMP)) { return XDP_PASS; } // Get stats map. u32 key = 0; stats_t*stats = bpf_map_lookup_elem(&stats_map, &key); u64 now = bpf_ktime_get_ns(); // Check blacklist map. u64 *blocked = NULL; if (iph6) { blocked = bpf_map_lookup_elem(&ip6_blacklist_map, &src_ip6); } else if (iph) { blocked = bpf_map_lookup_elem(&ip_blacklist_map, &iph->saddr); } if (blocked != NULL && *blocked > 0) { if (now > *blocked) { // Remove element from map. if (iph6) { bpf_map_delete_elem(&ip6_blacklist_map, &src_ip6); } else if (iph) { bpf_map_delete_elem(&ip_blacklist_map, &iph->saddr); } } else { #ifdef DO_STATS_ON_BLOCK_MAP // Increase blocked stats entry. if (stats) { stats->dropped++; } #endif // They're still blocked. Drop the packet. return XDP_DROP; } } // Retrieve total packet length. u16 pkt_len = data_end - data; // Parse layer-4 headers and determine source port and protocol. struct tcphdr *tcph = NULL; struct udphdr *udph = NULL; struct icmphdr *icmph = NULL; struct icmp6hdr *icmp6h = NULL; u16 src_port = 0; #ifdef ENABLE_FILTER_LOGGING u16 dst_port = 0; #endif u8 protocol = 0; if (iph6) { protocol = iph6->nexthdr; switch (iph6->nexthdr) { case IPPROTO_TCP: // Scan TCP header. tcph = data + sizeof(struct ethhdr) + sizeof(struct ipv6hdr); // Check TCP header. if (unlikely(tcph + 1 > (struct tcphdr *)data_end)) { return XDP_DROP; } src_port = tcph->source; #ifdef ENABLE_FILTER_LOGGING dst_port = tcph->dest; #endif break; case IPPROTO_UDP: // Scan UDP header. udph = data + sizeof(struct ethhdr) + sizeof(struct ipv6hdr); // Check TCP header. if (unlikely(udph + 1 > (struct udphdr *)data_end)) { return XDP_DROP; } src_port = udph->source; #ifdef ENABLE_FILTER_LOGGING dst_port = udph->dest; #endif break; case IPPROTO_ICMPV6: // Scan ICMPv6 header. icmp6h = data + sizeof(struct ethhdr) + sizeof(struct ipv6hdr); // Check ICMPv6 header. if (unlikely(icmp6h + 1 > (struct icmp6hdr *)data_end)) { return XDP_DROP; } break; } } else if (iph) { protocol = iph->protocol; switch (iph->protocol) { case IPPROTO_TCP: // Scan TCP header. tcph = data + sizeof(struct ethhdr) + (iph->ihl * 4); // Check TCP header. if (unlikely(tcph + 1 > (struct tcphdr *)data_end)) { return XDP_DROP; } src_port = tcph->source; #ifdef ENABLE_FILTER_LOGGING dst_port = tcph->dest; #endif break; case IPPROTO_UDP: // Scan UDP header. udph = data + sizeof(struct ethhdr) + (iph->ihl * 4); // Check TCP header. if (unlikely(udph + 1 > (struct udphdr *)data_end)) { return XDP_DROP; } src_port = udph->source; #ifdef ENABLE_FILTER_LOGGING dst_port = udph->dest; #endif break; case IPPROTO_ICMP: // Scan ICMP header. icmph = data + sizeof(struct ethhdr) + (iph->ihl * 4); // Check ICMP header. if (unlikely(icmph + 1 > (struct icmphdr *)data_end)) { return XDP_DROP; } break; } } // Update client stats (PPS/BPS). u64 pps = 0; u64 bps = 0; if (iph6) { UpdateIp6Stats(&pps, &bps, &src_ip6, src_port, protocol, pkt_len, now); } else if (iph) { UpdateIpStats(&pps, &bps, iph->saddr, src_port, protocol, pkt_len, now); } for (int i = 0; i < MAX_FILTERS; i++) { u32 key = i; filter_t *filter = bpf_map_lookup_elem(&filters_map, &key); // Check if ID is above 0 (if 0, it's an invalid rule). if (!filter || filter->id < 1) { break; } // Check if the rule is enabled. if (!filter->enabled) { continue; } // Do specific IPv6. if (iph6) { // Source address. if (filter->src_ip6[0] != 0 && (iph6->saddr.in6_u.u6_addr32[0] != filter->src_ip6[0] || iph6->saddr.in6_u.u6_addr32[1] != filter->src_ip6[1] || iph6->saddr.in6_u.u6_addr32[2] != filter->src_ip6[2] || iph6->saddr.in6_u.u6_addr32[3] != filter->src_ip6[3])) { continue; } // Destination address. if (filter->dst_ip6[0] != 0 && (iph6->daddr.in6_u.u6_addr32[0] != filter->dst_ip6[0] || iph6->daddr.in6_u.u6_addr32[1] != filter->dst_ip6[1] || iph6->daddr.in6_u.u6_addr32[2] != filter->dst_ip6[2] || iph6->daddr.in6_u.u6_addr32[3] != filter->dst_ip6[3])) { continue; } #ifdef ALLOW_SINGLE_IP_V4_V6 if (filter->src_ip != 0 || filter->dst_ip != 0) { continue; } #endif // Max TTL length. if (filter->do_max_ttl && filter->max_ttl > iph6->hop_limit) { continue; } // Min TTL length. if (filter->do_min_ttl && filter->min_ttl < iph6->hop_limit) { continue; } // Max packet length. if (filter->do_max_len && filter->max_len > (ntohs(iph6->payload_len) + sizeof(struct ethhdr))) { continue; } // Min packet length. if (filter->do_min_len && filter->min_len < (ntohs(iph6->payload_len) + sizeof(struct ethhdr))) { continue; } } else if (iph) { // Source address. if (filter->src_ip) { if (filter->src_cidr == 32 && iph->saddr != filter->src_ip) { continue; } if (!IsIpInRange(iph->saddr, filter->src_ip, filter->src_cidr)) { continue; } } // Destination address. if (filter->dst_ip) { if (filter->dst_cidr == 32 && iph->daddr != filter->dst_ip) { continue; } if (!IsIpInRange(iph->daddr, filter->dst_ip, filter->dst_cidr)) { continue; } } #ifdef ALLOW_SINGLE_IP_V4_V6 if ((filter->src_ip6[0] != 0 || filter->src_ip6[1] != 0 || filter->src_ip6[2] != 0 || filter->src_ip6[3] != 0) || (filter->dst_ip6[0] != 0 || filter->dst_ip6[1] != 0 || filter->dst_ip6[2] != 0 || filter->dst_ip6[3] != 0)) { continue; } #endif // TOS. if (filter->do_tos && filter->tos != iph->tos) { continue; } // Max TTL length. if (filter->do_max_ttl && filter->max_ttl < iph->ttl) { continue; } // Min TTL length. if (filter->do_min_ttl && filter->min_ttl > iph->ttl) { continue; } // Max packet length. if (filter->do_max_len && filter->max_len < (ntohs(iph->tot_len) + sizeof(struct ethhdr))) { continue; } // Min packet length. if (filter->do_min_len && filter->min_len > (ntohs(iph->tot_len) + sizeof(struct ethhdr))) { continue; } } // PPS. if (filter->do_pps && pps < filter->pps) { continue; } // BPS. if (filter->do_bps && bps < filter->bps) { continue; } // Do TCP options. if (filter->tcpopts.enabled) { if (!tcph) { continue; } // Source port. if (filter->tcpopts.do_sport && htons(filter->tcpopts.sport) != tcph->source) { continue; } // Destination port. if (filter->tcpopts.do_dport && htons(filter->tcpopts.dport) != tcph->dest) { continue; } // URG flag. if (filter->tcpopts.do_urg && filter->tcpopts.urg != tcph->urg) { continue; } // ACK flag. if (filter->tcpopts.do_ack && filter->tcpopts.ack != tcph->ack) { continue; } // RST flag. if (filter->tcpopts.do_rst && filter->tcpopts.rst != tcph->rst) { continue; } // PSH flag. if (filter->tcpopts.do_psh && filter->tcpopts.psh != tcph->psh) { continue; } // SYN flag. if (filter->tcpopts.do_syn && filter->tcpopts.syn != tcph->syn) { continue; } // FIN flag. if (filter->tcpopts.do_fin && filter->tcpopts.fin != tcph->fin) { continue; } // ECE flag. if (filter->tcpopts.do_ece && filter->tcpopts.ece != tcph->ece) { continue; } // CWR flag. if (filter->tcpopts.do_cwr && filter->tcpopts.cwr != tcph->cwr) { continue; } } else if (filter->udpopts.enabled) { if (!udph) { continue; } // Source port. if (filter->udpopts.do_sport && htons(filter->udpopts.sport) != udph->source) { continue; } // Destination port. if (filter->udpopts.do_dport && htons(filter->udpopts.dport) != udph->dest) { continue; } } else if (filter->icmpopts.enabled) { if (icmph) { // Code. if (filter->icmpopts.do_code && filter->icmpopts.code != icmph->code) { continue; } // Type. if (filter->icmpopts.do_type && filter->icmpopts.type != icmph->type) { continue; } } else if (icmp6h) { // Code. if (filter->icmpopts.do_code && filter->icmpopts.code != icmp6h->icmp6_code) { continue; } // Type. if (filter->icmpopts.do_type && filter->icmpopts.type != icmp6h->icmp6_type) { continue; } } else { continue; } } #ifdef ENABLE_FILTER_LOGGING if (filter->log > 0) { LogFilterMsg(iph, iph6, src_port, dst_port, protocol, now, pps, bps, i); } #endif // Matched. action = filter->action; blocktime = filter->blocktime; goto matched; } if (stats) { stats->passed++; } return XDP_PASS; matched: if (action == 0) { // Before dropping, update the blacklist map. if (blocktime > 0) { u64 newTime = now + (blocktime * NANO_TO_SEC); if (iph6) { bpf_map_update_elem(&ip6_blacklist_map, &src_ip6, &newTime, BPF_ANY); } else if (iph) { bpf_map_update_elem(&ip_blacklist_map, &iph->saddr, &newTime, BPF_ANY); } } if (stats) { stats->dropped++; } return XDP_DROP; } else { if (stats) { stats->allowed++; } } return XDP_PASS; } char _license[] SEC("license") = "GPL"; __uint(xsk_prog_version, XDP_DISPATCHER_VERSION) SEC(XDP_METADATA_SECTION);